Exercise 33

Verify that another possible choice of δ for showing that $\lim _{x \rightarrow 3} x^{2}=9$ in Example 4 is $\delta=\min \{2, \varepsilon / 8\}$.

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad 0<|x-3|<\delta \quad \text { then } \quad\left|x^{2}-9\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x-3|$.

$$
\begin{gathered}
\left|x^{2}-9\right|<\varepsilon \\
|(x+3)(x-3)|<\varepsilon \\
|x+3||x-3|<\varepsilon
\end{gathered}
$$

On an interval centered at $x=3$, a positive constant C can be chosen so that $|x+3|<C$.

$$
\begin{aligned}
& C|x-3|<\varepsilon \\
& |x-3|<\frac{\varepsilon}{C}
\end{aligned}
$$

To determine C, suppose that x is within a distance 2 from 3 .

$$
\begin{gathered}
|x-3|<2 \\
-2<x-3<2 \\
4<x+3<8 \\
|x+3|<8
\end{gathered}
$$

The constant C is then 8 . Choose δ to be whichever is smaller between 2 and $\varepsilon / 8$: $\delta=\min \{2, \varepsilon / 8\}$. Now, assuming that $|x-3|<\delta$,

$$
\begin{aligned}
\left|x^{2}-9\right| & =|(x+3)(x-3)| \\
& =|x+3||x-3| \\
& <8\left(\frac{\varepsilon}{8}\right)=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 3} x^{2}=9
$$

